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ABSTRACT

This paper concerns the problem of planning a sequence of movements of

linked polyhedra through 3 dimensional Euclidean space, avoiding contact with "

a fixed set of polyhedra obstacles. We prove this generalized mover's problem

is polynomial space hard. Our proof provides strong evidence that robot

movement planning is computationally intractable, i.e., any algorithm requires O

time growing exponentially with the number of degrees of freedom.
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ABSTRACT

This paper concerns the problem of planning a sequence of movements of

linked polyhedra through 3 dimensional Euclidean space, avoiding contact with

a fixed set of polyhedra obstacles. We prove this generalized mover's problem

is polynomial space hard. Our proof provides strong evidence that robot

movement planning is computationally intractable, i.e., any algorithm requires

time growing exponentially with the number of degrees of freedom.
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1. INTRODUCTION

1.1 The Movers Problem

The classical mover's problem in d-dimensional Euclidean space is:

Input: (O,P ,p IPF) where 0 is a set of polyhedral obstacles fixed

in Euclidean space and P is a rigid polyhedron with distinguished initial

position pI and final position pF' The inputs are assumed to be specified

by systems of rational linear inequalities.

Problem: Can P be moved by a sequence of translations and rotations

from pI to PF without contacting any obstacle in 0?

For example, P might be a sofa* which we wish to move through a room

crowded with obstacles. Figure 1 gives a simple example of a two dimensional

movers problem.

The mover's problem may be generalized to allow P (the object to be

moved) to consist of multiple polyhedra freely linked together at various

distinguished vertices. (A typical example is a robot arm with multiple

joints.) Again, the input is specified by systems of rational linear

inequalities. (A precise definition of the generalized problem is given in

Section 2.)

1.2 Lower Bounds for Generalized Mover's Problems

Our main result, first presented in [Reif, 79] (and given in full detail

in Section 2) is that the generalized mover's problem in three dimensions is

*The author first realized the nontrivial mathematical nature of this problem
when he had to plan the physical movement of an antique sofa from Rochester
to Cambridge.
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polynomial space hard. That is, we prove that the generalized mover's

problem is at least as hard as any computational problem requiring polynomial

space. (Polynomial space problems are at least as hard as the well known

NP problems; see [Garey and Johnson, 79].)

This was the first paper investigating the inherent computational complexity

of a robotics problem, and in fact was the first polynomial space hardness

result for any problem in Computational Geometry. Our proof technique is to

use the degrees of freedom of P to encode the configuration of a polynomial

space bounded Turing maching M, and to design obstacles which forced the

movement of P to simulate the computation of M.

This work was originally motivated by applications to robotics: the

author felt it was important to examine computational complexity issues in

robots given the recent development of mechanical devices autonomously

controlled by micro and minicomputers, and the swiftly increasing computational

power of these controllers. However, it took a number of years before

computational complexity issues in robotics became of more general interest.

Recently there have been a flurry of papers in the now emerging area which

we might term Computational Robotics.

Recent investigations in lower bounds have provided some quite ingenious

lower bound constructions for restricted cases of the generalized mover's

problem. For example, [Hopcroft, Joseph, and Whitesides, 82] showed that the

generalized mover's problem in three dimensions is also polynomial space hard,

and (Hopcroft and Sharir, 84] show that the problem of moving a collection

of disconnected polyhedra in a two dimensional maze is polynomial space hard.

The problem of moving a collection of disks in two dimensions is known to be

NP-hard [Sparakis and Yap, 85], but is remains open to show this problem

polynomial space hard.

, ....... '.-. -. ,.- ' 7 -' -: : .. <-" ".-....= -h .''i- i ?'v ".-?i.'-- . .. .i .- i
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1.3 Upper Bounds for Mover's Problems

Our lower bounds for the generalized mover's problem provide evidence

that time bounds for algorithms for movement planning must grow exponentially

with the number of degrees of freedom. We next give a brief discription of

known algorithms for mover's problems. In our original paper [Reif, 79] we

also sketched a method for efficient solution of the classic mover's problem

where P, the object to be moved, is rigid. In spite of considerable work

on this problem by workers in the robotics fields and in artificial intellegence,

(for example [Nilson, 69], [Paul, 72], (Udupa, 77], [Widdoes, 74],

[Lozano-Perez and Wesley, 79]) no algorithm guaranteed to run in polynomial

time had previously appeared. Our approach was to transform a classic mover's

problem (O,P,pi ,PF) of size n in d dimensions to an apparently simpler

mover's problem (O',P',p',p) of dimension d', where P' is a single part

and d' is the number of degrees of freedom of movement in the original

problem. The transformed problem is thus to find a path in d'-dimensional

space avoiding the transformed obstacles 0. The fundamental difficulty is that

the induced obstacles may be non-linear constraints. ([Lozano-Perez and

Wesley, 79) did not construct 0', but instead approximated the induced

obstacles 0' by linear constraints. Unfortunately, an exponential number

of linear constraints were required to approximate even a quadratic constraint

within accuracy 2- n . Thus their method required exponential time (i.e.,

2cn time for some c >0) even if the original mover's problem was two

dimensional.)

Example. Consider a classical mover's problem (O,P,p ,PF) restricted

to dimension d =2, with the obstacles 0 consisting of a set of line

segments and P a single polygon. A position of P can be specified by a

triple (x,y,e) where (x,y) are the cartesian coordinates of some fixed

vertex of P and 0 is the angle of rotation around this vertex. We define
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a mapping f from the position of P to 3-space. Let f(x,y,e) =(x',y',z')

where y =z', tan(_) =x'/y', and x =(x') +(y') -a, for some sufficiently

larCg constant a >0. (Ox may be taken as the diameter of a circle enclosing

P.) See Figure 3.

In this case, we define a 1-contact set to be a maximal set of positions

of P where a vertex of P contacts a line segment of 0, or a vertex of 0

contacts a line segment of P. (See Figure 4.) The transformed obstacles 0'

are the union of these 1-contact sets. Thus each obstacle in 0' is a

quadratic surface patch which may be easily constructed from the input, there

are at most o(IoJIPI) such obstacles and their 0(1I0 2 1P1 2) intersections
-c

can easily be computed within accuracy 2n  for any c >0, by known poly-

nomial time procedures [Comba, 681 for intersection of quadratic surface

patches. Hence in this simple example the connected regions bounded by 0'
c

can be explicitly constructed in polynomial time within accuracy 2- n  which

is sufficient for solution of this mover's problem.

In the case of a classical mover's problem (0,P,p Ip F) of dimension d =3,

the transformed problem (0',P',pI,p') has dimension d' =6. In this case
IFP;

we define a 1-contact set to be a maximal set of positions of P where an

edge of P contacts a face of 0 or an edge of 0 contacts a face of P.

Again, the 1-contact sets are constant degree polynomials. The transformed

obstacles 0' are the union of the 1-contact sets. The connected regions

defined by 0' can again be explicitly constructed by intersecting these

constraints. In [Reif, 791, we briefly suggested a method for this construction,

but the full credit should be given to [Schwartz and Sharir, 83A] who later

gave a complete detailed description of a method for explicit construction of

such a transformed movers problem in 3 dimensions in polynomial time.

([O'Dunlaing, Sharir, and Yap, 831 further improved this construction by

observing that movement of P can be restricted to be equidistant from

the obstacles.)

..........................................................'.......-......>->> .-> ,->>>>>->>>>,-< " >> . '-
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This approach was extended by [Schwartz and Sharir, 83B) to solve any

generalized mover's problem of input size n with d' degrees of freedom in

20(d
')

time n They make use of the algebraic decomposition of [Collins, 75)

(previously used to decide formulas of the theory of real closed fields) to

construct the connected regions bounded by O'. Note that their upper bounds

grow doubly exponentially with d', where as our polynomial space lower bounds

suggest only single exponential time growth with d'. It remains a challenging

problem to close the gap between those lower and upper bounds for generalized

movers problems. Further progress will likely depend on improvements to

decision algorithms for the theory of real closed fields; recently [Ben-Or,

Kozen, and Reif, 84] gave a single exponential space decision algorithm.

1.4 Further Problems in Computational Robotics

There are some very challenging problems remaining in the field of

Computational Robotics beyond the complexity of the mover's problem and its

generalization. We mention below three such problems and some recent progress.

(I) Frictional Movement. The problem here is to plan movement for

(O,P,p I F ) in the case contact is allowed in the presence of friction between

surfaces. [Rajan and Schwartz, 85] gives the first known decision algorithm in

the case that 0 is a cylindrical hole and P is a peg. [Miller and Reif,

85] prove undecidability of planning frictional movement. What natural sub-

class of frictional movement problems is decidable?

(2) Minimal Movement. The problem is, given a set of k polygonal

obstacles in d space defined by a total of n linear constraints, and

points pI' P find a minimal length path from p1  to PF avoiding the

obstacle 0. [Chazelle, 82] gives a O(n log n) algorithm in the case d =2
O2(n)

and k =1. [Sharir and Schorr, 84) give a 2 2  algorithm for d =3.

|
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Recently [Reif and Storer, 65] gave a O(nk log n) algorithm for d =2 and

n kotime and n space alqorithms for d= 3. Is there a n

algorithm for d = 3?

(3) Dynamic Movement. The problem is to plan the movement of a polygon in

d dimensions with bounded velocity modulus between points pI and pF'

so as to avoid contact with a set 0 of k polygonal obstacles (defined by

a total of n linear constraints) moving with fixed, known velocity. [Reif

and Sharir, 85] give the first known investigation of the computational

complexity of planning dynamic movement. They show that the problem of

planning dynamic movement of a single (k =1) disk P in d =3 dimensions

is polynomial space hard. (This result is somewhat surprising, since P in

this case has only 3 degrees of freedom. Our key new idea is to use time to

encode a configuration of a polynomial space bounded Turing machine.) Is

this problem polynomial space hard for dimension d =2?

Asteo avc-i-fance Trozl7r?.c are a natural subclass of dynamic mover's

problems where each obstacle is convex and does not rotate. [Reif and

Sharir, R5] aive a polynomial time aloorithm for dimension d= 2 with a
n 0()O(log n)

bounded number k= 0(l) of obstacles and give 2 time and n

space algorithms for dimension d= 3 with an unbounded number k of obstacles.

Is the asteroid avoidance problem polynomial in the case d= 3?

1.5 Organization of the Paper

In Section 2.1 we give a precise definition of the generalized mover's

problem. In Section 2.2 we define symmetric Turing machines. In Section 2.3

we give the relevant complexity theoretic definitions and results. In Section

2.4, we give our proof that the generalized mover's problem is polynomial space

hard.

- - 7 - .-. .-".... . . . . . . . ..". . . . . . . . . . . . . . . .... .. , ," '" "" " "c" '- _'' _' " ,"' , > ' °" ', : ' '-
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2. THE GENERALIZED MOVER'S PROBLEM IS PSPACE-HARD

2.1 Definition of the Generalized Mover's Problem

We let a convex polyhedron in three space be specified by a finite set

of linear inequalities with rational coefficients. We let a (rationaZ)

polyhedron be specified by a finite union of such convex polyhedra. Such a

polyhedron P can be encoded by some fixed convention as a finite binary

string <P >.

We will formally specify the three dimensional generalized mover's problem

(O,P,pi pF) as follows:

(1) the obstacle set 0 consists of a finite set of (rational) polyhedra

O1,'--,O n1

(2) the object to be moved, P, consists of a finite set of (rational)

polyhedra P ,...,P which are freely linked at distinguished linkage

vertices vl,...,v

(3) pI' PF are distinguished initiaZ and final rational positions of

P.

Hence we may encode (O,P,p IO F ) as the string (<01 >,..., <0 n>)

( <Pn > '.•' ' <Pn2 
>  v l ... Vn ( <pI > <p F>). The size of (O,Pjp Ip )

is the length of this encoding.

A legal position of P is any position where each polyhedron pi

of p intersects no obstacle of 0 and furthermore intersect no other poly-

hedron of P except at its specified linkage vertices. We assume, of course,

that pI and pF are both legal positions. A legal movement of P is a

continuous sequence of simultaneous translations and rotations of the

polyhedra of P through only legal positions. The generalzized mover's

problem is to determine the existence of a legal movement from pI to PF
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It is important to observe that any generalized mover's problem is

reversible in the sense that if there is a legal movement of P from p1

to p then the movement can always be reversed so as to begin at p and
FF

end at p I This reversibility properry imposes a constraint on the class

of computation problems which can be simulated by generalized movement problems;

in particular the simulated machine must be symmetric in a sense precisely

*" defined below.

2.2 Symmetric Computations

A symnetric Tur'ng machine is defined (see also [Lewis and Papadimitriou,

_ 82] for an equivalent definition) as M= (F,,Q,qI1 qFA) where

(i) r is the tape alphabet with distinguished pad symbol $ Er and

blank symbol # E r

(ii) Ic r-{$,#} is the input alphabet

(iii) Q is the state set with distinguished initial state q1 EQ and

accepting state q EQ

(iv) A C(Q xT 2 xf{-i,1) 2 is the transition relation, where we require

that for each transition ((q,L,R,D),(q',L',R',D')) EA

*- (a) D' =-D

(b) if L=$, then D il. Alternatively, if R=$, then D3 I

(c) also ((q',L',R',D'),(q,L,R,D)) EA.

We will also be given a space bound s =s(n) which is a function of the

input length n such that s(n) />n. M has a single read/write tape with s +2

tape cells. This tape has contents t =t0 t ... ts t where to =t +1 =$ and
01 s+l0 l

t i , ... ,t Er -{s}.

M has a single read/write tape head which simultaneously scans the tape

cell under the current head position, as well as the tape cell immediately

to the left or right of the current head position depending on the direction

°....................................
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of the next move of the tape head (this convention is used to allow for

reversability). Restriction (b) insures M never moves its head off the end

of the tape. Restriction (c) implies that the transition relation is a

symmetric relation.

More precisely, a configuration of M is a tuple ID = (q,h,t) where

q EQ is the current state, h E{l,...,s} is the current position of the tape

head, and t=t0ti...t St E$(F {$))s$ is the current tape contents. Thes s+l

next move relation i- is a relation on configurations such that

(q,h,t) t (q',h',t') iff there exists a transtion ((q,L,R,D),(q',L',R',D')) EA

the new head position is h' =h +D, the new tape contents t' are identical to

the previous tape contents t except at positions h and h +D.

(1) if D =1 then th = L, th+l = R, th L', and t + 1

(2) if D=-I then ttl=L, t=R t'=L', and t=R.

Given the input string w =w1 ...w nEn initiaZ c isns-heiitn cnigrtins

ID (w) =(q I'l'$W...w # s - n $). We define IDF = (q F,l,$# $) to be the

accepting configuration of M. Let t-* be the transitive closure of -.

M accj input w iff ID0 (w) *ID . Let L(M) be the language accepted

by M.

2.3 Complexity Definitions

For some space bound s -s(n) >)n let DSPACE(s), SSPACE(s), NSPACE(s)

denote the class of language accepted by deterministic, symmetric, and

nondeterministic Turing machines, respectively. [Savitch, 70) shows

PROPOSITION 1. NSPACE(s) C DSPACE(s 2).



M accepts input w.

We can assume, without loss of generality, that s =s(n) is constructible

in deterministic O(log n) space.

It will be useful to consider the tape alphabet r to be the integers

{l,...,y}, where y=IFi-

We begin by defining P, the object which is to be moved. P will contain

a sequence A0 ,...,As+l of triangular pyramids of identical size which will be

called arms. For each i =0,...,s+l arm A. has a distinguished arpex1

vertex v.. A, has an equilateral triangular base with base sides of length1 1

a =1/(4(y+l)). Each of the vertices of the base is of length 1/2 from the

apex vertex v. (see Figure 5). For each i =0,...,s there is also a1

straight (one dimensional) link of length 1 from v. to vi+ 1 which freely

links A. to A. (see Figure 6).
1 i+l

It will be useful to define a cutout poZygon Q consisting of the union

of a rectangle and a set of triangles {Qij } of identical size for

i =0,...,2s+l and j =l,...,y. The rectangle is of horizontal length 2s +1

and vertical heiqht E =a/10. Each triangle 0.. has a distinguished vertex"1J

u, connected to two sides of length 1/2 +c, and a base side of length a +c
1

opposite u. (see Figure 7). On the upper side of the rectangle is the1

sequence of vertex u0,...,U 2s+1  spaced at distance 1 between each other.

For each i =0,...,2s+l the triangles Qil,...,Qiy each share vertex u.1

but are otherwise disjoint, and arranged in cyclic order (as in Figure 8).

Let TUNNEL(Q) be a cylinder with perpendicular cross-section Q.

Therefore, the interior of TUNNEL(Q) is formed by sweeping Q in a direction

perpendicular to the plane in which Q is contained. We will call the

region swept out by triangle Qij the Q i,j-s lot.

The basic idea in our construction will be to use the s +2 degrees

of freedom of P to encode a given configuration of M.

. . . . . . ...-...,." ",- ,,- ' hm 'm a" ni m.. .. I| . . . . .... ... i i
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Let h E{l,...,s} be a head position and let t =t0 t ...tsts+1 E$(r -{$})s$

be the contents of the tape. We say P encodes (h,t) if P is positioned

in the interior of TUNNEL(Q) so that for i =0,1,...,s+l arm A. is in

the Q sh+i,t.-slot (see Figure 9). We say P is properly positioned if

P encodes some (h,t). We shall define obstacles and the initial position

in such a way that P is always properly positioned.

Observe that we have defined TUNNEL(Q) so that if P is properly

positioned in its interior and P encodes (h,t), then P always encodes

(h,t) on any legal movement of P within the interior of TUNNEL(Q) since

the arms of P remain in the same slots.

A segnent of TUNNEL(Q) is a copy of the cylinder TUNNEL(Q) bounded by

two planes perpendicular to the cylinder (see Figure 10). We will allow

separate segments of TUNNEL(Q) to be merged into a single copy of a

TUNNEL(Q) segment. This can be done as in Figure 11, so that if P encodes

(h,t) on an entrance, P encodes (h,t) on the exit. Note that of

course, P can also move from the e.:it back to either entrance, without

modifying the encoding (h,t). Thus this construction can also be viewed as

the branch of a segment of TUNNEL(Q) into two segments of TUNNEL(Q).

Next we require a construction of obstacles which force P to modify its

position so as to simulate next moves of the symmetric machine M.

For any L,R E{,...,y}, let Q[L,RJ be the polygon derived from Q by

deleting all triangles Q sj 0 and Q s+l,j for all j E{l,...Y} -{L) and

J lE{1,...y} -{R} (see Figure 12). Observe that if P is positioned in the

interior of TUNNEL(Q[L,R]) and P encodes (h,t), then arm Ah must be

in the Qs,L-Slot and arm A+i must be in the Qs+l,R-slot and hence the

encoded tape symbols in the h and h +1 position are th =L and t+i mR ,

respectively.
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Let Q be the figure derived from Q by adding two semidisks with

radius 1/2 +C, and with centers at us and us+ 1  (see Figure 13). Note

that if P is positioned in the interior of TUNNEL(Q) so that P encodes

(h,t) except at th and th+l, then the arms Ah and Ah+ are each free

to move within the interior region swept out by a semidisk.

Let E EA be a transition, where

= ((q,L,R,D), (q',L',R',-D))

We will define an obstacle B with a connected interior region with

distinguished entrance and exit, and with the property that if P enters the

interior of B6 encoding (h,t), then when P exits B,, P encodes (h',t'),

where

(q,h,t) t- (q',h',t')

We first consider the case D =1. Then we let B consist of a concatenation

of unit length symbols of the following:

(1) TUNNEL(Q)

(2) TUNNEL(Q[L,R])

(3) TUNNEL(Q)

(4) TUNNEL(Q[L',R'])

(5) TUNNEL(Q), which is displaced one unit to the left with respect to

segments (l)-(4).

(See Figure 14.)

Suppose P enters B6 encoding (h,t). Then P can move through
6R

*TUNNEL(Q[L,R]J) only if th =L and th+ --R. After moving through TUNNEL(Q),



-14-

P encodes (h,t'), where t' is identical to t except t' and

are arbitrary elements of {l,...y}. However, P can move through

TUNNEL(Q[L',R']) only if t' =L' and t'+1 =R'. Since the last segment of

TUNNEL(Q) is displaced one unit to the left, P exits B6 encoding

(h+l,t'), where (q,h,t) h (q',h+l,t').

In the case D =-l, we take B6 to be B, with the exit and entrance

face reversed, where 6' =((q',L',R',l),(q,L,R,-l)). (Note that B6, is

already defined by the above construction for D =1.) Since movement of P

is always reversible, P enters B6 encoding (h,t) and exits

encoding (h-l,t') iff P enters B,, encoding (h-l,t') and exits

encoding (h,t) iff (q',h-l,t') - (q,h,t) iff (q,h,t) I- (q',h-l,t'), since

is symmetric.

We now have defined all the elementary building blocks required to simulate

a computation of M. We will construct a copy C of a TUNNEL(Q) segmentq

for each state q EQ. C will make a series of branches so as to lead toq

the entrance of each B6 such that 6 EA is a transition from state q.

Also C will make a series of branches in the opposite direction, so as toq

lead to the exit of each B,, such that 6' EA is a transition to state q.

Note that the construction is of polynomial size and can easily be done by a

O(log n) space deterministic Turing machine.

For the proof of our construction, it will be useful to extend our definition

of encoding so that if P is located in the interior of C encoding (h,t),q

we also then say that P encodes configuration ID =(q,h,t).

Given input w =w1 '...w E w n ' we define the initiaZ position pI to be

a rational position of P encoding the initial configuration

ID0(w) =(qI1,l,$w 1 .. w n # s - n $ ) .
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The finaZ posit-ion p F is defined to be a rational position of P encoding

the accepting configuration IDF = (qF,l,$#s $).

LEMMA. P has a legaZ movement from pI (w) to a position encoding configuration

ID iff ID0 (w) i* ID.

Proof. ID 0 (w) t* ID iff 3 a sequence of configurations

ID0(w) =IDID1,...,IDk =ID where ID i-ID1,...,IDk- 1 -IDk  iff 3 a

sequence of transitions 61, .... 6k EA where ID. =6. (ID ) for i =l,...,k.

We now claim that this holds iff P has a legal movement from pI (w)

through BI,"" B (in this order) to a position pk encoding ID ID.
61 6 kkk=

In the case k =0, the claim obviously holds since pi (w) encodes ID 0 (e).

Suppose the claim holds for all k' <k. Then P has a legal movement from

PI (w) through B6 1,...,B 6 k_ to position p k- encoding IDk-1  iff

ID 0(w) -* IDkl . But our above construction of B insures that there exists

a legal movement of P from pk-l through B6k to a position encoding IDk

iff IDk =6 k (ID k _ ) . Hence the claim holds. a

The Lemma then implies: P has a legal movement from initial position

p (w) to final position pF iff ID 0(w) 0-* ID., where IDF  is the accepting

configuration. This completes the proof of our theorem. 0
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[Lewis and Papadimitriou , 82) show

PROPOSITION 2. DSPACE(s) c SSPACE(s) C NSPACE(s).

Let

PSPACE = U DSPACE(nc )

The above imply

PROPOSITION 3. PSPACE = U SSPACE(nC).
c >l

A Zog-space reduction from a language L' CF* to a language L is a

mapping f computable by a 0(log n) space bounded deterministic Turing

machine such that for each input w El:*, w EL' iff f(w) EL. In this case,

we say L' is Zog-sxcace reducible to L. Note that any log-space reduction

0(log n) =0(1)
requires only time bound 2 =n

Given a language class L, a language L is L-hard if each language

L' EL is log-space reducible to L.

2.4 The Simu ' ion of a Symmetric Turing Machine

We now prove:

THEOREM. The generalized mover's problem is PSPACE-hard.

Proof. Let M = (r,,Q,qI ,qFA) be a symmetric Turing machine with polynomial

space bound s(n) =n c for some constant c >1l. We will construct a log-space

reduction from L(M) to the generalized mover's problem. In particular, given

an input w=w ...W EEn, we must construct in O(log n) space a mover's problem

f(w) =(O,P,pI, PF) such that P has a legal movement from pI to pF iff
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